Amman Chamber of Commerce

From: Sent: To: Subject: Attachments: Jordan Chamber of Commerce (Diwan) <diwan@jocc.org.jo> Monday, July 14, 2025 11:22 AM Jordan Chamber of Commerce (Diwan) زيوت التزييت محركات الاحتراق الداخلي 12849.pdf; مشروع التصويت- زيوت التزييت.pdf

> السادة رؤساء الغرف التجارية الأردنية المحترمين سعادة السيد ممثل قطاع السيارات والأليات الثقيلة ولوازمها المحترم

الجهة الوارد منها الكتاب: مؤسسة المواصفات والمقاييس الاردنية موضوع الكتاب: زيوت التزييت محركات الاحتراق الداخلي

السلام عليكم ورحمة الله وبركاته،،،

أهدي سعادتكم أطيب التحيات، وارجو أن ارفق لكم نسخة عن الكتاب الوارد من مؤسسة المواصفات والمقاييس الاردنية رقم ج/عام/ 12849 تاريخ 2025/7/8 والمتضمن قرار عدم السماح باستيراد زيوت المحركات ذوات التصنيف (Obsolete) حسب الجدول (2,3,4) من المواصفة القياسية الاردنية رقم 392-/1/2021 زيوت التزييت – زيوت تزييت محركات الاحتراق الداخلي والمذكورة في الجدول ، وذلك اعتبارا من تاريخ 2025/10/1 ويمنع طرحها في الاسواق المحلية اعتبارا من 1/2/2020 .

أرجو سعادتكم التكرم بالاطلاع، والايعاز للتعميم على أعضائكم ومنتسبيكم ذوي الاختصاص .

وتفضلوا بقبول فائق الاحترام والتقدير ،،،

خليل محمد الحاج توفيق رئيس مجلس الإدارة

غرفة تجارة الأردن هاتف: 5902040 6 962+ فاكس: 5902051 6 962+

غرفة تجارة عمّان AMMAN CHAMBER OF COMMERCE
التاريخ: ١٥ تمرز ٢٠٢٥
رقم الوارد: 3290

سعادة رئيس غرفة تجارة الأردن

الموضوع: زبوت التزييت محركات الاحتراق الداخلي

تحية طيبة وبعد ...

أرجو سعادتكم التكرم بالتعميم والتأكيد على جميع مستوردي وتجار الزبوت المعدنية بأنه تقرر عدم السماح باستيراد زبوت المحركات ذوات التصنيف (Obsolete) حسب الجداول رقم (٢، ٣، ٤) من القاعدة الفنية رقم ٢٠٢/١-٣٦٢ زبوت التزييت – زبوت تزييت محركات الاحتراق الداخلي والمذكورة في الجدول أدناه، وذلك اعتباراً من تاريخ ٢٠٢/١/١٠٢١، وكما يمنع طرحها في الأسواق المحلية اعتباراً من ٢٠٢/٧/١.

Gasoline engines grades	Diesel Engines grades
SA	GF-1
SB	GF-2
SD	GF-3
SE	GF-4
SF	GF-5
SG	CA
SH	CB
	CC
	CD
	CD-II
	CE
	CF-2
	CF-4
	CG-4

وتفضلوا سعادتكم بقبول فائق الاحترام

المديسراله 85 C

م. عبير بركات الزهير

ع الميارات واوازمها

المملكة الأمردنية الهاشمية

الواسم، م / عام / 12727 التاريخ، 1445 10 1445 هـ المواضق: 10 / 08 / 2023 م

	معالي
	Tà ba
	سعادة

تحية طيبة وبعد،

أرجو معاليكم/عطوفتكم/سعادتكم التكرم بالعلم بأن أسلوب العمل الفني المتبع في وضع المواصفات القياسية والقواعد الفنية الأردنية يقتضي تعميم مشروع التصويت على الجهات ذات العلاقة، وذلك لإبداء الرأي والتصويت عليه تمهيداً لعرضه على مجلس الإدارة لاعتماده كمواصفة قياسية أو قاعدة فنية أردنية.

لذا أرجو أن أرفق لكم طياً نسخة عن مشروع التصويت للمواصفة القياسية الأردنية ٣٩٢–٢٠٢٣/١ الخاص بزيوت التزييت – زيوت تزييت محركات الاحتراق الداخلي، الجزء ١ : تصنيف معهد البترول الأمريكي (API)، الذي أعدته اللجنة الفنية الدائمة لزيوت التزييت (٤).

يرجى التكرم بعرض هذا الشروع على المختصين لديكم ومواقاتنا بردكم عليه خلال شهرين من تاريخه، وذلك باستخدام بطاقة التصويت المرفقة، علماً بأن عدم الرد خلال الدة يعتبر موافقة من قبلكم على الشروع المذكور.

وتفضلوا بقبول فائق الاحترام

المدير العرام محطع م. عبير بركات الزهير

5 × 5

الرفقات: مشروع التصويت بطاقة التصويت قة/ مدير مديرية التق حة/ رئيس قسم فحص ومتابعة الوامغات محنسخة/ رئيس قسم المناهات الكيميائية أ تسخة / م. رحاب المراحلة Y. TT/V/Ya-4)

المملكة الأمدينية الحاشية. ماق : ١٦٢٠ ما ٢٠١٢٤ ما ٢٠١٢٤ م. ٢٠٠ م. ٢٠٠ م. ٢٠٠ م. ٢٠٠ ما تاريخ المرتبع المرتبع الإكثر ريني www.jsmo.gov.jo

الرقم، م/ علم / 12727 التاريخ، م/ علم / 12727 م التاريخ، 144 / 10 / 1445 م الموافق، -01 / 80 / 2023 م

تعميم مشروع التصويت

عنوان المشـــروع: زيوت التزييت ــ زيوت تزييت محركات الاحتراق الداخلي ، الجزء ١ : تصنيف معهد البترول الأمريكي

(API)

سكرتير اللجينة الغنية: م. رحاب المراحلة

الجهة	الرقم	الجهة	لرقم
هيئة تنظيم قطاع الطاقة والمعادن	11	وزارة البيئة	1
غرفة صناعة الأردن	17	وزارة الصحة/ مديرية صحة البيئة	Y
غرفة تجارة الأردن	١٣	نقابة المهندسين الأردنيين	۲
جامعة اليرموك	12	وزارة الصناعة والتجارة والتموين	٤
غرفة صناعة عمان	10	الجمعية العلمية الملكية	0
غرفة تجارة عمان	17	الجامعة الأردنية	1
الجمعية الكيميائية الأردنية	1V	جامعة العلوم والتكنولوجيا	v
القيادة العامة للقوات المسلحة الأردنية – الجيش العربي/المختبرات العمكرية لمراقبة الجودة)A	أمانة عمان الكبرى	^
وزارة الأشغال العامة والإسكان	19	شركة مصغاة البترول الأردنية المساهمة المحدودة	1
مؤسسة التدريب الهني	۲.	دائرة المتريات الحكومية	1.

منحة/ مدير مديرية التقي مندخة/ رئيس قسم فحص ومثايمة المواصفات منفة / رئيس قسم المناعات الكيميائية م المراحلة عنه المراحلة عنه المراحلة T. Tr/V/To-40 Rehab

الملكنة الأردنية الهاشية

ماق: ۲۰۲۰۱۲۲۰ + فأكر : ۲۰۲۰۱۲۲۰ م ۲۰۲۰ + ص.ب: ۱۹۵۲۲ عمان ۱۱۱۹ الأردن المرتج المرتج المرتج المرتج (www.jsmo.gov.jo

\$

م. عبير بركات الزهير

مؤسسة المواصفات والمقاييس الأردنية

تصويت	اقة	h
		•

عنوان المشروع: زيوت التزييت . زيوت تزبيت محركات الاحتراق	رقم المشروع: ۲۰۲۲/۳۹۲				
الداخلي، الجزه ١: تصنيف معهد البترول الأمريكي (API)					
أمين اللجنة الفنية: م. رحاب المراحلة	سم اللجنة الفنية: الدائمة لزيوت التزييت (٤)			امتم ال	
- آخر موجد للزديم ۲/۲۳ ت/۲۰۲۴		1.11/.	٧/٢٦	التعميم:	تاريخ
التعديل المقترح رأي اللجنة الفنية	الملاحظة	حظة	وع الملا	i i	الرقم
		هيكلية	فنية	عامة	
		وصياغية			
		1			
		1			
			-		
		1	1	النهائيا	7
1		للاحظات). ۱۱۰۰ ۱۱ ، ۱۰			
موافقة مع الملاحظات المرفقة ، والتي يمكن الأخذ بها أو تجاوزها حسب الاقتضاء موافقة للأسباب المغنية المرفقة ، والتي عند زوالها ينقلب التصويت إلى موافقة .					
عدم مواهد للمسابب العلية المراجعة، والتي عد روانة ينقب النصورك إلى مواهلة.					
التاريخ:	طيها في عاد ويود مرست.	the state of the second st	_	لرويت لقائمة ب	-
	اسم الشخص المسؤول:				

SDwf 001-07

Contents

š.

Foreword	
1- Scope	
2- Normative reference	
3- Terms and definitions	
4- Classification	
 4- Classification	
6- Sampling	
6- Sampling	6
8- Packing	7
9- Labeling	
 Annex A (Normative) Gasoline engine oil categories Annex B (Normative) Diesel engine oil categories References 	
Annex B (Normative) Diesel engine oil categories	35
References	45
Tables P	

...

· · ·

-

Tables

I ables	
Table 1 – SAE J300 viscosity grades for engine	8
Table 2 - Gasoline engines - The current and previous API	9
Table 3 - Diesel Engines - The current and previous API grades	10
Table 4 - ILSAC standard for passenger çar engine oils	11
Table 5 - Bench tests for gasoline engines categories	12
Table 6 - Bench tests for diesel engine oil categories	15
Table 7 - Bench tests for ILSAC engine oil categories	16
Table 8 - Pour point and flash point of engine oils	17
Table 9 - API base of classification	17
Table A - 1 - API SP and SP-RC/GF-6 categories	18
Table A - 2 + API SN and SN-RC /GF-5 categories	22
Table A = 3 - API SM/GF-4 categories	27
Table $A = 4 = API SL$ category	30
Table A – 5 – API SJ category	32
Table B - 1 - API CK-4 and FA-4 categories	35
Table B – 2 – API CJ-4 category	38
Table B - 3 - API CI-4 and CI-4 PLUS categories	40
Table B – 4 – for API CH-4 category	43

This Standard cancels and replaces the same standard issued in 2007.

Foreword

The Jordan Institution for Standards and Metrology is the national standardization body in Jordan. The work of preparing Jordanian standards is normally carried out by technical committees composed of the interested parties, which are involved in the scope of standard. All the interested bodies have the right to vote on the draft Jordanian Standard during the enquiry stage, taking into consideration the importance of harmonizing Jordanian standards with the International, regional or national standards (as much as possible) with the purpose of eliminating technical barriers to trade and facilitating International trade.

Jordanian Standards are drafted in accordance with the rules given in the Jordanian Directive 1-2:2005, part 2: Rules for the structure and drafting of Jordanian Standards related to standardization department.

The permanent technical committee for Lubricating oils 4 has studied Jordanian Standard 392:2007 related to "Lubricating oils – Lubricating oils for internal combustion engines", and the prepared project 392-1:2023 related to "Lubricating oils – Lubricating oils for internal combustion engines, Part 1: API classifications", and has recommended to approve the amended project as a Jordanian Standard 392-1:2023 according to article (12) of Standards and Metrology Law No. (22) for the year 2000 and it's amendments.

This Jordanian Standard includes the following parts under the same general title, "Lubricating oils - Lubricating oils for internal combustion engines":

- Part 1: API classifications.

- Part 2: ACEA European oil sequences for gasoline engines and diesel engines.

under amendment

Lubricating oils - Lubricating oils for internal combustion engine Part 1: API classifications

1-Scope

This Jordanian Standard is concerned with lubricating oils for internal combustion engines suitable for gasoline and diesel engine services (excluding marine application) according to API performance classifications.

2- Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

- ASTM D92, Standard test method for flash and fire points by cleveland open cup tester.

- ASTM D97, Standard test method for pour point of petroleum products.

- ASTM D130, Standard test method for corrosiveness to copper from petroleum products by copper strip test.

- ASTM D445, Standard test method for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity).

- ASTM D892, Standard test method for foaming characteristics of lubricating oils.

- ASTM D2270, Standard practice for calculating viscosity index from kinematic viscosity at 40 °C and 100 °C.

- ASTM D2622, Standard test method for sulfur in petroleum products by wavelength dispersive Xray fluorescence spectrometry.

- ASTM D2896, Standard test method for base number of petroleum products by potentiometric perchloric acid titration.

- ASTM D4057, Standard practice for manual sampling of petroleum and petroleum products.

- ASTM D4683, Standard test method for measuring viscosity of new and used engine oils at high shear rate and high temperature by tagered bearing simulator viscometer at 150 °C.

- ASTM D4684, Standard test method for determination of yield stress and apparent viscosity of engine oils at low temperature.

- ASTM D4741, Standard test method for measuring viscosity at high temperature and high shear rate by tapered-plug viscometer.

- ASTM D4951, Standard test method for determination of additive elements in lubricating oils by inductively coupled plasma atomic emission spectrometry.

- ASTM D5119, Standard test method for evaluation of automotive engine oils in the CRC L-38 spark-ignition engine.

- ASTM D5133, Standard test method for low temperature, low shear rate, viscosity/temperature dependence of lubricating oils using a temperature-scanning technique.

- ASTM D5185, Standard test method for multielement determination of used and unused lubricating oils and base Oils by inductively coupled plasma atomic emission spectrometry (ICP-AES).

- ASTM D5293, Standard test method for apparent viscosity of engine oils and base stocks between -10 °C and -35 °C using cold-cranking simulator.

- ASTM D5302, Standard test method for evaluation of automotive engine oils for inhibition of deposit formation and wear in a spark-ignition internal combustion engine fueled with gasoline and operated under low-temperature, light- duty conditions.

- ASTM D5480, Standard test method for engine oil volatility by gas chromatography.

- ASTM D5481, Standard test method for measuring apparent viscosity at high - temperature and high-shear rate by multicell capillary viscometer.

- ASTM D5533, Standard test method for evaluation of automotive engine oils in the sequence IIIE, spark-ignition engine.

- ASTM D5800, Standard test method for evaporation loss of lubricating oils by the noack method.

- ASTM D5844, Standard test method for evaluation of automotive engine oils for inhibition of rusting (Sequence IID).

- ASTM D5966, Standard test method for evaluation of engine oils for roller follower wear in lightduty diesel engine.

- ASTM D5967, Standard test method for evaluation of diesel engine oils in T-8 diesel engine

- ASTM D6082, Standard test method for high temperature foaming characteristics of lubricating oils

- ASTM D6278, Standard test method for shear stability of polymer containing? fluids using a European diesel injector apparatus.

- ASTM D6335, Standard test method for determination of high temperature deposits by thermo oxidation engine oil simulation test.

ASTM D6417, Standard test method for estimation of engine oil volatility by capillary gas chromatography.

- ASTM D6557, Standard test method for evaluation of rust preventive characteristics of automotive engine oils.

- ASTM D6593, Standard test method for evaluation of automotive engine oils for inhibition of deposit formation in a spark - ignition internal combustion engine fueled with gasoline and operated under low-temperature, light-duty conditions. - ASTM D6681, Standard test method for evaluation of engine oils in a high speed, single-cylinder

1 diesel engine-caterpillar 1P test procedure.

 ASTM D6709, Standard test method for evaluation of automotive engine oils in the sequence VIII spark-ignition engine (CLR oil test engine).

- ASTM D6750, Standard test methods for evaluation of engine oils in a high-speed, single cylinder diesel engine - 1K procedure (0,4 % fuel sulfur) and 1N procedure (0,04 % fuel sulfur).

- ASTM D6794, Standard test method for measuring the effect on filterability of engine oils after treatment with various amounts of water and a long (6 h) heating time.

- ASTM D6795, Standard test method for measuring the effect on filterability of engine oils after treatment with water and dry ice and a short (30 min) heating time.

- ASTM D6838, Standard test method for cummins M11 high soot test.

- ASTM D6891 Standard test method for evaluation of automotive engine oils in the sequence IVA spark-ignition engine.

- ASTM D6894 Standard test method for evaluation of aeration resistance of engine oils in direct injected turbocharged automotive diesel engine.

- ASTM, D6896, Standard test method for determination of yield stress and apparent viscosity of used engine oils at low temperature.

- ASTM D6922, Standard test method for determination of homogeneity and miscibility in automotive engine oils.

- ASTM D6923, Standard test method for evaluation of engine oils in a high speed, single - cylinder diesel engine - caterpillar 1R test procedure.

- ASTM D6975, Standard test method for cummins M11 EGR test.

- ASTM D6984, Standard test method for evaluation of automotive engine oils in the sequence IIIF, spark - ignition engine.

 ASTM D6987/D6987M Standard test method for evaluation of diesel engine oils in T-10 exhaust gas recirculation diesel engine.

- ASTM D7042, Standard test method for dynamic viscosity and density of liquids by stabinger viscometer (and the calculation of kinematic viscosity).

- ASTM D7097 Standard test method for determination of moderately high temperature piston deposits by thermo - oxidation engine oil simulation test - TEOST MHT.

- ASTM D7109, Standard test method for shear stability of polymer - containing fluids using a European diesel injector apparatus at 30 cycles and 90 cycles.

- ASTM D7156, Standard test method for evaluation of diesel engine oils in the T-11 exhaust gas recirculation diesel engine.

- ASTM D7216, Standard test method for determining automotive engine oil compatibility with typical seal elastomers.

- ASTM D7320, Standard test method for evaluation of automotive engine oils in the sequence IIIG, spark - ignition engine.

- ASTM D7346 Standard test method for no flow point and pour point of petroleum/products and liquid fuels.

- D7422 Standard test method for evaluation of diesel engine oils in T-12 exhaust gas recirculation diesel engine.

- ASTM D7468, Standard test method for cummins ISM test.

- ASTM D7484, Standard test method for evaluation of automotive engine oils for valve - train · 12. wear performance in cummins ISB medium-duty diesel engine.

- ASTM D7528, Standard test method for bench oxidation of engipe oils by ROBO apparatus.

- ASTM D7549, Standard test method for evaluation of heavy-duty engine oils under high output

ASTM D7563, Standard test method for evaluation of the ability of engine oil to emulsify water and simulated Ed85 fuel.
ASTM D7589, Standard test method for method for method for method for method.

- ASTM D7589, Standard test method for measurement of effects of automotive engine oils on fuel economy of passenger cars and light-duty trucks in sequence VID spark ignition engine.

- ASTM D8047, Standard test method for evaluation of engine oil aeration resistance in a caterpillar C13 direct-injected turbo- charged automotive diesel engine.

- ASTM D8048, Standard test method for evaluation of diesel engine oils in T-13 diesel engine.

- ASTM D8111, Standard test method for evaluation of automotive engine oils in the sequence IIIH, spark-ignition engine. 3.0

- ASTM D8114, Standard test method for measurement of effects of automotive engine oils on fuel economy of passenger cars and light - duty trucks in sequence VIE spark ignition.

- ASTM D8226, Standard test method for measurement of effects of automotive engine oils on fuel economy of passenger cars and light - duty trucks in sequence VIF spark ignition engine.

- ASTM D8256, Standard test method for evaluation of automotive engine oils for inhibition of deposit formation in the sequence VH spark - ignition engine fueled with gasoline and operated under low - temperature, light-duty conditions.

- ASTM D8279, Standard test method for determination of timing-chain wear in a turbocharged, direct-injection, spark - ignition, four - cylinder engine.

- ASTM D8291, Standard test method for evaluation of performance of automotive engine oils in the mitigation of low - speed, preignition in the sequence IX gasoline turbocharged direct injection, spark - ignition engine.

- ASTM D8350, Standard test method for evaluation of automotive engine oils in the sequence IVB spark-ignition engine.

3- Terms and definitions

For the purposes of this Jordanian Standard, the following terms and definitions applies.

3-1

Base oil

Petroleum product produced after refining of crude oil or by other manufacturing process and used in manufacturing of lubricating oil and greases

3-2

Additives

Chemical materials designed to be added with lubricating oil to enhance its performance properties 3-3

Lubrication

The act of adding lubricating oil to reduce-friction-and wear between the moving parts, to control the increase in temperature rise caused by the friction, to minimize corrosion, and to remove residues resulting from internal combustion

4- Classification

Lubricating oils are classified according to their viscosity and performance as follows:

4-1 Classification according to viscosity

Lubricating oils are classified according to viscosity based on SAE J300 classification (see Table 1).

4-2 Classification according to performance

Lubricating oils are classified according to performance based on API classification (see Table 2, Table 3 and Table 4).

Note: Product can be suitable for more than one viscosity or performance grades according API or SAE grades.

4-2-1 ILSAC Standard for passenger car engine oils

For automotive gasoline engines, the latest ILSAC standard includes the performance properties of each earlier category and can be used to service older engines where earlier category oils were recommended (see Table 4).

4-2-1-1 GF-6A

Introduced in May 2020, designed to provide protection against low-speed pre-ignition (LSPI). 4-2-1-2 GF-6B

Applies only to oils having an SAE viscosity grade of 0W-16. Introduced in May 2020, designed to provide protection against low-speed pre-ignition (LSPI).

4-2-2 Service categories for passenger car motor oils

The latest API service category includes the performance properties of each earlier category and can be used to service older engines where earlier category oils were recommended.

The lubricants covered by these categories are for gasoline passenger cars, some trucks and offhighway, equipment (service category "S"). The letter following service category "S" indicates the performance category of the oils.

The letters "SI", "SK", and so have been omitted from the sequence of letter designations for API service categories because of their common association with other organizations or systems:

4-2-2-1 SP: 2020 gasoline engine service

Introduced in May 2020, designed to provide protection against low-speed pre-ignition (LSPI), timing chain wear protection, improved high temperature deposit protection for pistons and turbochargers, and more stringent sludge and varnish control. API SP with resource conserving matches ILSAC GF-6A by combining API SP performance with improved fuel economy, emission control system protection and protection of engines operating on ethanol-containing fuels up to E85.

- For 2011 and older automotive engines.
 - 4-2-2-3 SM: 2005 gasoline engine service -----
 - For 2005 and older automotive engines. _____

4-2-2-4 SL: 2001 gasoline engine service

For 2001 and older automotive engines.

4-2-2-5 SJ: 1997 gasoline engine service --

For 1997 and older automotive engines.

4-2-3 Service categories for diesel engine oils:

The lubricants covered by this category passenger (category "C") cover diesel engine trucks and diesel powered off-highway equipment (fleets, contractors, farmers, etc...). The letter following passenger category "C" indicates the performance category of the oil.

4-2-3-1 CK-4: For 2017 heavy-duty diesel engine service

API service category CK-4 describes oils for use in high-speed four-stroke cycle diesel engines designed to meet 2017 model year on-highway and Tier 4 non-road exhaust emission standards as well as for previous model year diesel engines. These oils are formulated for use in all applications with diesel fuels ranging in sulfur content up to 500 ppm (0,05 % by weight).

4-2-3-2 FA-4: For 2017 heavy-duty diesel engine service (low Sulfur)

API service category FA-4 describes certain XW-30 oils specifically formulated for use in select high-speed four-stroke cycle diesel engines designed to meet 2017 model year on-highway greenhouse gas (GHG) emission standards. These oils are formulated for use in on-highway applications with diesel fuel sulfur content up to 15 ppm (0,001 5 % by weight).

4-2-3-3 CJ-4: For 2010 severe-duty diesel engine service

For high-speed four-stroke cycle diesel engines designed to meet 2010 model year on- highway and tier 4 non-road exhaust emission standards as well as for previous model year diesel engines.

4-2-3-4 CI-4: For 2004 severe-duty diesel engine service

Introduced in 2002. For high-speed, four-stroke engines designed to meet 2004 exhaust emission standards implemented in 2002. Some CL4 oils may also qualify for the CI-4PLUS designation.

4-2-3-5 CH-4: For 1998 severe-duty diesel engine service

Introduced in 1998. For high-speed, four-stroke engines designed to meet 1998 exhaust emission standards. CH-4 oils are specifically compounded for use with diesel fuels ranging in sulfur content up to 0,5 % weight. Can be used in place of CD, CE, CF-4, and CG-4 oils.

5- Characteristics

The engine lubricating oils shall fulfill the following characteristics:

5-1 Homogeneously mixed, bright and clear and have acceptable odor.

5-2 Free from Water, sediments, dusts, abrasive matter and impurities

5-3 To contain some additives, which are added in specific percentage that was determined during the development and research process to achieve the requirements in tables 5,6 and 7, if they are completely dissolved and not separable during the product's shelf life. The following elements shall be tested (calcium, phosphorous, zinc, magnesium, molybdenum) as per the ASTM D4951 test method. Which the concentration of the elements can be used to verify the addition of all amounts of additives.

5-4 Physical properties according to Table 1.

5-5 The required bench tests in tables 5, 6 and 7 according to test method in tables 5, 6 and 7.

5-6 The bench tests and engine performance tests which are carried out by either of the product formula developer, or by manufacturers of lubricating oil additives, or by engine manufacturers are listed in Annex A and Annex B.

5-7. The test results of flash point and Pour point according to Table 8.

produced by internationally-recognized licensed processes and the base oil products have the same quality of virgin Base Oils and conform to the API classification of Base oil given in table 8. 5-9 The minimum test result values of TBN should be 6 (mg-KOH/g) for gasoline and 8 (mg KOH/g) for diesel.

5-10 The maximum test result value of cupper corrosion should be tb.--

6- Sampling

Samples shall be drawn according to ASTM D4057.

7- Method of testing

The following tests shall be carried out according to the performance and application requirement and the representative sample taken in accordance with clause 6.

7-1 Physical and chemical tests

Physical and chemical tests shall be conducted, and test methods shall be determined according to clause 5, taking into account the exemption of some grades from some tests as indicated in the Tables.

7-1-1 Visual inspection.

7-1-2 Appearance: Homogeneously mixed, bright and clear and have acceptable odor. Free from water, sediments, dusts and impurities.

7-1-3 Kinematic viscosity test according to ASTM D445 or ASTM D7042 provided that ASTM D445 is the reference test method to resolve doubts or dispute.

7-1-4 Calculation of viscosity index.

7-1-5 Apparent viscosity test according to ASTM D5293.

7-1-6 Yield stress and apparent viscosity at low temperature according to ASTM D4684.

7-1-7 Measuring viscosity at high temperature and high shear rate according to ASTM D4683, ASTM D4741 or ASTM D5481

7-1-8 Tests of elements (calcium, phosphorous, zinc, magnesium, molybdenum) according to ASTM D4951 test method.

7-1-9 Low and high temperature foam determination test using ASTM D892 and ASTM D6082 test methods

7-1-10 Determination of homogeneity and miscibility according to ASTM D6922.

7-1-11 Low temperature, low shear rate, viscosity/temperature dependence of lubricating oils using a temperature scanning according to ASTM D5133.

7-1-12 Evaporation loss by the noack method according to ASTM D5800.

7-1-13 Shear stability of polymer containing fluids using a European diesel injector apparatus according to ASTM D6278.

7-1-14 Sulfur content test according to ASTM D4951, ASTM D5185 or ASTM D2622.

7-1-15 Flash point test according to ASTM D92.

7-1-16 Pour point test according to ASTM D97 or ASTM D7364 provided that ASTM D97 is the reference test method to resolve doubts or dispute.

7-1-17 TBN according to ASTM D2896.

7-1-18 Cupper corrosion according to ASTM D130.

7-2 Engine performance tests

Engine performance tests are carried out by the product formula developer, by manufacturers of lubricating oil additives, or by engine manufacturers.

It is required to be done only once when developing the lubricating oil formula. Clause 5-3 is enough to ensure that the required percentage of additives is added to meet the required performance. 1-

8- Packing

1

Lubricating oils shall be packed in tightly closed and sealed containers preventing possibilities of oil leakage or oil contamination with any impurities; such containers neither shall affect nor be affected by the oil.

9- Labeling

The following information shall be legibly and indelibly marked in Arabic and/or English languages on each container of lubricating oils.

9-1 Net volume, in liters.

9-2 Producer's name or his registered trade mark.

9-3 Name of the country of origin.

9-4 The classification of oils according to SAE viscosity, and API/performance (as in clause 4), and its intended use.

9-5 Date of production, barcode and the batch number.

and the second and and the stand and the second and 9-6 Precaution: "Avoid Environmental Pollution.

4

:

3.

,

a		e 1 - SAE J300 viscos	Low-shear=	Low-shear-	*
CAP	Low temperature (°C)	Low-temperature (°C) pumping	rate kinematic viscosity	rate kinematic viscosity	High-shear-rate viscosity (mPa·s)
SAE viscosity grade	cranking- viscosity (mPa·s)	viscosity (mPa·s) max with	(mm ² /s) at 100 °C min	(mm ² /s) at 100 °C max	at 150 °C min ASTM D4683,
	max ASTM D5293	No Yield Stress ASTM D4684	ASTM D445 or ASTM D7042	ASTM D445 or ASTM D7042	ASTM D4741 or ASTM D5481
0W	6 200.at -35	60 000 at -40	3,8_	-	- ¹
5W _	6:600 at +30.	_60 000_at -35	-3,8 -	- 5	
10W	- 7 000 at-25		- 4;1	· - 3 ¹	-
15W	7 000 at -20	60 000 at -25	5,6	51	~
20W	9 500 at -15	60 000 at -20	5,6		-
25W	13 000 at -10	60 000 at -15	9,3	20 ³ -	-
8	-	-	4,0	× < 6,1	1,7
12	-	-	5,0	< 7,1	2,0
16	-	-	6,1,5×	< 8,2	2,3
20	-	-	6,9	< 9,3	2,6
30	-	-	9,3	< 12,5	2,9
40	-		12,5	< 16,3	3,5 (0W-40, 5W-40 and 10W-40 grades
40	-	- Jan Star	12,5	< 16,3	3,7 (15W-40, 20W- 40, 25W-40, 40 grades)
50	-		16,3	< 21,9	3,7
60	-	, st	21,9	< 26,1	3,7

Table 1 - SAE J300 viscosity grades for engine oils

Status	Service
Current	Introduced in May 2020.
Current.	For 2020 and older automotive engines
Current	For 2010 and older automotive engines.
Current	For 2004 and older automotive engines.
Current	For 2001 and older automotive engines.
Obsolete	CAUTION: Not suitable for use in most gasoline-powered automotive engines built after 1996. May not provide adequate protection against build-up of engine sludge, oxidation, or wear.
Obsolete	CAUTION: Not suitable for use in most gasoline-powered automotive engines built after 1993. May not provide adequate protection against build-up of engine sludge, oxidation, or wear.
Obsolete	CAUTION: Not suitable for use in most gazoline-powered automotive engines built after 1988. May not provide adequate protection agains build-up of engine sludge.
Obsolete	CAUTION: Not suitable for use in most gasoline-powered automotive enginesbuilt after 1979.
Obsolete	CAUTION: Not suitable for use in most gasoline-powered automotive engines built after 1971. Use in more modern engines may cause unsatisfactory performance or equipment harm.
Obsolete	CAUTION: Not-suitable for use in most gasoline-powered automotive engines built after 1967. Use in more modern engines may cause unsatisfactory performance or equipment harm.
Obsolete	CAUTION: Not suitable for use in most gasoline-powered automotive engines built after 1951. Use in more modern engines may cause unsatisfactory performance or equipment harm.
Obsolete	CAUTION: Contains no additives. Not suitable for use in mos gasoline- powered automotive engines built after 1930. Use in moder engines maycause unsatisfactory performance or equipment harm.
	Current Current Current Obsolete Obsolete Obsolete Obsolete Obsolete Obsolete

Table 2 - Gasoline engines - The current and previous API grades

. .

DIC	1 000	1 0	101
D.I.	1392	-1-2	123

--

,

4

Table 3 - Diesel Engines - The current and previous API grades				
Category	Status	Service		
FA-4	Current	API Service category FA-4 describes certain XW-30 oils specifically formulated for use in select high-speed four-stroke cycle diesel engines designed to meet 2017 model year on-highway greenhouse gas (GHG) emission standards. These oils are formulated for use in on-highway applications with diesel fuel sulfur content up to 15 ppm (0,001 5 % by weight).		
CK-4	Current	API Service category CK-4 describes oils for use in high-speed four- stroke cycle diesel engines designed to meet 2017 models year on- highway and Tier 4 non-road exhaust emission standards as well as for previous model year diesel engines. These oils are formulated for use in -all applications with diesel fuels ranging in sulfur content up to 500ppm (0,05 % by weight).		
CJ-4	Current	For high-speed four-stroke cycle diesel engines designed to meet 2010 model year on- highway and Tier 4 non-road exhaust emission standards as well as for previous model year diesel engines.		
CI-4	Current	Introduced in 2002. For high-speed, four-stroke engines designed to meet 2004 exhaustemission standards implemented in 2002. Some CI-4 oils may also qualify for the CF4PLUS designation.		
CH-4	Current	Introduced in 1998. For high-speed, four-stroke engines designed to meet 1998 exhaust emission standards. CH-4 oils are specifically compounded for use with diesel fuels ranging in sulfur content up to 0,5 % weight. Can be used in place of CD, CE, CF-4, and CG-4 oils.		
CG-4	Obsolete	CAUTION: Not suitable for use in most diesel-powered automotive engines built after 2009.		
CF-4	Obsolete	CAUTION: Not suitable for use in most dicscl-powered automotive engines built after 2009.		
CF-2	Obsolete	CAUTION: Not suitable for use in most diesel-powered automotive engines built after 2009.		
CF	Obsolete	CAUTION: Not suitable for use in most diesel-powered automotive engines built after 2009.		
CE	Qbsolete	CAUTION: Not suitable for use in most diesel-powered automotive engines built after 1994.		
CD-II ع	Obsolete	CAUTION: Not suitable for use in most diesel-powered automotive engines built after 1994.		
CD	Obsolete	CAUTION: Not suitable for use in most diesel-powered automotive engines built after 1994.		
CC CC	Obsolete	CAUTION: Not suitable for use in most diesel-powered engines built after 1990.		
СВ	Obsolete	CAUTION: Not suitable for use in most diesel-powered engines built after 1961.		
CA	Obsolete	CAUTION: Not suitable for use in most diesel-powered engines built after 1959.		

Table 3 - Diesel Engines - The current and previous API grade

Name	Status	Service
GF-6A	Current	Introduced in May 2020, designed to provide protection against low-speedpre-ignition (LSPI).
GF-6B	Current	Applies-only to oils having an SAE viscosity grade of 0W-16. Introduced inMay 2020, designed to provide protection against low-speed pre-ignition (LSPI).
GF-5	Obsolete	Use GF-6A where GF-5 is recommended.
GF-4	· Obsolete ·	Use GF-5 where GF-4 is recommended.
6F-3	Öbsolete	" Use GF-5 where GF-3 is recompriseded.
GF-2	Obsolete	Use GF-5 where GF-2 is recommended.
GF-1	Obsolete	Use GF-5 where GET is recommended.

Table 4 - ILSAC Standard for passenger car engine oils

., · ·

Use GF-5 where

Table 5 - Bench tests for gasoline engines categories

7

							Viscosity		Y				
		AP	I SP	API SP- RC	AP	I SN	API SN- RC	APIS	1/GF-4	API	I SL	API	SJ
Requirements	ASTM Test method	0W-16 5W-16 0W-20 5W-20 0W-30 5W-30 10W-30	other viscosity grades	All viscosity grades	0W-16 5W-16 0W-20 5W-20 0W-30 5W-30 10W-30	grades	All viscosity grades		All ; others ^{a)}	0W-20 5W-20 5W-30 10W- 30	All others	0W-20 5W-20 5W-30 10W-30	All others
High temperature/high shear viscosity at 150 °C, mPa.s, min	D4683, D4741, D5481	2,3	2,3	2,3	5	12,6	2,3	NR	2,6	b) 	2,6	b)	2,6
Volatility loss at 250 °C, % max	D5800	15,0°)	15,0°)	15,0°)	15,0,0	15,0°)	15,0°)	15,0 °)	15,0°)	15,0	15,0	22 ^{d)}	20 ^{d), e)}
Volatility loss at 371 °C, % max	D6417	-	-	-	J-	-	-	10,0	10,0	10,0	10,0	17 ^{d)}	15 ^d), e)
Volatility loss at 371 °C, % max	D5480	-	-			-	-			-	-:	17 ^d	15 d), e)
Mass fraction phosphorus, %, max Mass fraction phosphorus, %, min	D4951 D5185	0,08 ^{f)} 0,06 ^{f)}	NR 0,06 ^{f)}	0,08 ^{,19} ,0;06 ^{,1})	0,08 ^t) 0,06 ^t)	NR 0,06	0,08 0,06	0;08 ^{g)} 0;06 ^{g)}	NR 0,06 ^{g)}	0,10 0,06	NR 10,06	0,10 0,06	NR 0,06
Sulfur SAE 0W-16, 5W-16, 0W-20, 0W- 30, 5W-20, and 5W-30		0,5 ^{f)}	NR	and the second sec	0,5 ⁰	NR	0,5 ^{f)}		\ - [-	-	-	-
SAE 0W-20, 0W-30, 5W-20, and 5W-30	D4951, D5185,	- 2	**** 1 -	-	-	-	-	0,5 ^{B)}	NR	-		-	-
SAE 10W-30	D2622	0,6 1)	NR	0,6 ^{f)}	0,6 ^{f)}	NR	0,6 ^{f)}	0,7 ^{g)}	NR	-	-1	1 -	-
All other viscosity grades		NR	NR	0,6 ^{f)}	NR	NR	0,6 ¹⁾	- !	-	-	-	-	
Shear stability	D6278	5,8	5,8	5,8	-	-			-		-	-	-
Gelation index, max	D5133	12 ^{L)}	NR	12 ^{L)}	12 ^{L)}	NR o)	12 ^{L)}	NR	NR o)	12 ^{m), n)}	NŖ	12	NR 0)
Homogeneity and miscibility	D6922	0)	0)	0)	0)	oj	0)		U)	5	o)		~,

								Viscosity	grades p	,e ³¹		1	1	
			API SP	API SP	API SP-RC	API SN	API SN	API SN-RC	APISM	1/GF-4	API	SL	API	SJ
	Requirements	ASTM Test method	0W-16 5W-16 0W-20 5W-20 0W-30 5W-30 10W-30		All viscosity	0W-16 5W-16 0W-20 5W-20 0W-30 5W-30 10W-30	grades	All viscosity grades	0W-20 5W-20 0W-30 5W-30 10W-30	All others "	0W-20 5W-20 5W-30 10W-30	All others	0W-20 5W-20 5W-30 10W-30	All others
Foaming tendency	foaming/settling, ml, max Sequence I Sequence II Sequence III	D892 ^{j)}	10/0 ⁱ⁾	10/0 ^{J)} 50/0 ^{J)} 10/0 ^{J)}	10/0 ⁻¹⁾ 50/0 ⁻¹⁾ 10/0 ⁻¹⁾	10/0 ¹⁵ \$50/0 ¹⁰ 10/0 ¹⁰	10/0 ^{j)} 50/0 ^{j)} 10/0 ^{j)}	10/0 ¹⁰ 50/0 ¹⁰ 10/0 ¹⁰	i 10/0 ^j) 50/0 ^j) 10/0 ^k)	10/0 ^{J)} 50/0 ^{J)} 10/0 ^{J)}	10/0 ^{-j)} 50/0 ^{-j)} 10/0 ^{-j)}	10/0 ^D 50/0 ^D 10/0 ^D	10/0 ³⁾ 50/0 ³⁾ 10/0 ³⁾	10/0 ^{j)©} 50/0 ^{j)©} 10/0 ^{j)©}
Static foam	tendency/stability, ml, max	D6082	-	-	3	-	-	-	100/0 0	100/0 1)	100/0 ¹⁾	100/0"	200/50 1)	200/50

1 1 Commention on since actor gaming (continued)

DJS 392-1:2023

^{a)} Does not include SAE 0W-16 and SAE 5W-16.

^{b)} Minimum high temperature/high shear viscosity at 150 °C for these viscosity grades as defined in SAE J300. ^{c)} Calculated conversions specified in ASTM D5800 are allowed.

^{d)} Meet the volatility requirement in either ASTM test method ASTM D\$800, ASTM D5480, or ASTM D6417.

^{e)} Passing volatility loss only required for SAE 15W-40.

¹ For all viscosity grades: If CH-4, CI-4 and/or CJ-4 categories precede the (S) category and there is no API Certification Mark, the (S) category limits for phosphorus, sulfur, and the TEOST MHT do not apply. However, the CJ-4 limits for phosphorus and sulfur do apply for CJ-4 oils. This footnote cannot be applied if CK-4 or FA-4 is also clair ned. Note that these (C) category oils have been formulated primarily for diesel engines and may not provide all of the performance requirements consistent with vehicle manufacturers recommendations for gasoline-fueled engines.

For all viscosity grades: If CF-4, CG-4, and/or CI-4 categories precede the (S) category and there is no API Certification Mark, the limits for phosphorus, sulfur, and the TEOST MHT do not apply. However, the CJ-4 limits for phosphorous and sulfur do apply for CJ-4 oils. This footnote cannot be applied if CK-4 or FA-4 is also claimed. Note that these oils have been formulated primarily for diesel engines and may not provide all of the performance requirements consistent with vehicle manufacturers' recommendations for gasoline fueled engines.

Table 5 - Bench tests for gasoline engines categories (continued)

^{h)} Option A allowed and excluding paragraph 11 for SP.

¹⁾ After 1 minute settling period.

⁹ After 10 minutes settling period.

*) If CI-4, CJ-4, CK-4 and/or FA-4 categories precede the (S) category and there is no API Certification Mark, the Sequence VH (ASTM D8256), or VG (ASTM D6593), Ball Rust (ASTM D6557), and Gelation Index (ASTM D5133) tests are not required.

1) To be evaluated from -5 °C to temperature at which 40,000 cP is attained or -40°C, or 2 °C below the appropriate MRV TF-1 temperature (defined by SAE J300 (Table 1), whichever occurs first.

1

^{mi}) Requirement applies only to SAE 0W-20, 5W-20, 0W-30, 5W-30, and 10W-30 viscosity grades.

ⁿ⁾ For gelation temperatures at or above the W grade pumpability temperature as defined in SAE J300.

^{o)} Shall remain homogenous and, when mixed with ASTM reference oils, shall remain miscible.

• •

							Viscosity	grades			
Requirements			ASTM Test method	API FA-4			API CJ-4		API CI-4 and CI-4 PLUS	API	CH-4
Viscosity grades	Viscosity grades			xW-30	xW-30	xW-40	1. Alar				
High temperature/high shear viscosity at		min	D4683,	2,9	3,5	Meet SAE	3,	5	3,5 ^{a)}		
150 °C, mPa.s	ire/high shear viscosity at	max	D4741, D5481	3,2	NA	J300 ⁵	-		-		- 1 · ·
						S. C.	<>10W-30	10W-30	4	10W-30	15W-40
Volatility loss a	t 250 °C, % max		D5800	13,0		13,0	13,0	15,0	15,0	20	118
	t 371 °C, % max		D6417	-	⁷ عن	-		-	-	17 .	115
	foaming/settling, b) ml, max				in the second se		107		10/0	1	1
Foaming	Sequence I		D892 ^{c)}	10/0 .	<u>, 10/0</u>		10/0 20/0		10/0	2)/0 i
tendency	Sequence II	Sequence II		20/0 3		20/0			20/0	1	
	Sequence III			10/0'		10/0			10/0)/0 1
Chemical limits	Mass fraction phosphorus, %	, max	D4951	0,12		0,12	0,1		-		-
	Mass fraction sulfur, %, max		D4951	3 0,4		0,4	0,4		-		-
	Mass fraction sulfated ash, %, max		D874 5	1,0	1,0		1,0		-		;

South and

No list straight of

15/45

DJS 392-	1:2023			· 3 °2× *					
		Table 7 - Bench	tests for ILSAC engine oil categories	is the					
		1	Criterion						
	Requirements	ASTM Test method	Oils shall meet all requirements of SAE J300. Viscosity grades are limited to SAE 0W-20, 0W-30, 5W-20, 5W-30 and 10W-30 multi-grade oils	Oils shall meet all requirements of SAE J300. Viscosity gradles are limited to SAE 0W-16 mu hi-grade oils					
			GF-6A	GF-6B					
Volatilit	y loss at 250 °C, % max	D5800	15,0 ;	15,0					
	ction phosphorus, %, max	D4951 or	0,08	0,08					
	ction phosphorus, %, min	D5185	0,06	0,06					
Sulfur	0W and 5W multigrades, %, max	D4951, D5185, or	₄ 0,5	. 0,5					
	10W-30, %, max	D2622	0,6 ,	·-					
	foaming/settling, ml, max	DP(12 (() tion A	1	,					
Foaming tendency	Sequence I Sequence II	D892 (Option A and excluding paragraph 11)	50/0 10/0	10/0 50/0 10/0					
	tendency/stability, ml, max	D6082 (Option A)	3 100/0	. 100/0					
Shear st	ability, min	D6278	stay in grade	5,8					

3

and the state of t

North

1

Oil grades	Pour point °C (max)	Flash point °C (min)
0 W	39	185
5 W	-36	195
10 W	-33	205
15 W	-27	210
20 W	-24	215
25 W	-24	220
20	-21	215
30	-18	220 . يوج
40	-15	230
50	-9	235
60	-9	*240

Table 8 - Pour point and flash point of engine oils

ś

2

			9 - API base o Sulfur		عمراز
Group	Saturates (%)		Sulfur (%)	Viscosity Index	Other
I	< 90	and/or	> 0,03	≥ 80 - < 120	-
Ш	≥90	and	≤0,03	≥80 - < 120	-
III	≥ 90	and	₹0,03	≥ 120	-
IV		6. A.C.	7		PAO (poly Alpha Olefins)
v	Sarah Sarah	and the second			All other Base Oils not included in I, II, III or IV

Note 1: Companies also use their own marketing phrases: "Group 1-1/2" and "Group 2+" Note 2: "Group III" can be legally labeled "Synthetic"

Note 3: The Word "Synthetic" is not part of the API Classify Note 4: "Synthetic" is a marketing term, not a technical term is the state of th

(Normative) Gasoline engine oil categories Table A - 1 - API SP and SP-RC/GF-6 categories) SP-RC/GE-6 API SP API SP All viscosity grandes 0W-16 other viscosity ASTM Test 5W-16 grades Properties Requirements 0W-20 method 1 5W-20 0W-30 5W-30 10W-30 Bench Tests 81 NR phosphorus retention? % min NR D8111 Sequence IIIHB 11 50 % flow reduction, max EOFT D6795 % flow reduction, max - with 0,65% H2O - with 180 % H2O 1.1 50 50 . EOWTT D6794 50 - with 2,0 % H2O 50 - with 3,0 % H2O 1 white just

t

Annex A

			i		DJS 392-1:2		
		Table A – 1 – API SP and SP-RC/GF-6 categories	(continued)	22.27			
			API SP	API SP	SP-RC/GF-6		
Requirements	ASTM Test method	Properties	0W-16 5W-16 0W-20 5W-20 0W-30 5W-30 10W-30	other viscosity grades	All viscosity grades		
Aged oil low- temperature viscosity	D4684 or D7528	MRV TP-1 Apparent Viscosity and Yield Stress, cP	<6	<60,000 cP with no yield stress			
¥¥		high-temperature deposits, total deposit weight, mg, max XW-16	NR	NR	NR		
TEOST 33C	D6335	0W-20	NR	NR	NR		
		All other viscosity grades	NR	NR	30		
Emulsion retention	D7563	oil mixed with 10 % water and 10 % E85,0 °C and 25 °C at 24 hours	NR	NR	no water separation		
Ball Rust Test	D6557	average gray value, min 30		100)		
ball Rust Test	00007	avoidge gid finant and s	Volume Change, 9		s, Tensile strength change, %		
		Polyacrylate Rubber (ACM)	-5,9	-10, 10	And and a second s		
Elastomer	ASTM-	Hydrogenated Nitrile (HNBR)	-5,10	-10, 5	-20, 15		
Compatibility	D7216	Silicone Rubber (VMQ)	-5,40	-30, 10	-50, 5		
		CHARMEN AND AND AND AND AND AND AND AND AND AN			the second se		
Compatibility		Fluorocarbon Rubber (FKM)	, -2, 3	-6,6	-65, 10		

19/45

N. F. J.

	Properties d	0W-30 5W-30 10W-30		
Engine test requirements	3	T	100	
	Kinematic viscosity increase at 40°C, %, max	<u> </u>	1	
Sequence IIIH D8111	Average weighted piston deposits, merits, min	1	4,2	
	Hot stuck rings	<u> </u>	none	
Sequence IVB D8350	Average intake lifter volume loss (& position average), mm3, max		2,7	
Sequence IVB Doos	End of test fron, ppm, max			
	Average engine sludge, merits, min		7,6	
	Average rocker cover sludge, merits, min		8,6	
	Average engine varnish, merits, min		7,6	
	Average piston skirt varnish, merits, min		Rate and r	anort
Sequence VH D8256	Oil screen sludge, % area		Rate and r	and a second sec
	Oil screen debris, % area		None	A second se
	Hot-stuck compression rings		Rate and r	and the second se
	Cold stuck rings			
and the second	Oil-screen clogging, % area	1	Rate and r	epon

٠.

-

.

.

. 1

.

Requirements	ASTM Test method	roperues	API SP 22 0W-16 5W-16 0W-20 5W-20	API SP other viscosity grades	SP-RC/GF- All viscosity grades
Sequence VIE	D8114	SAE XW-20 viscosity grade - FEI SUM, % min - FEI 2, % min after 125 hours aging SAE XW-30 viscosity grade - FEI SUM, % min - FEI 2, % min after 125 hours aging SAE 10W-30 and all other viscosity grades not listed above - FEI SUM, % min - FEI 2, % min after 125 hours aging			3,8 1,8 3,1 1,5 2,8 1,3
Sequence VIF	D8226	SAE XW-16 only - FEI SUM, % min			4,1 1,9
Sequence VIII	D6709	Bearing weight loss, mg, max XW-16 All other viscosity grades		NR 26	
Sequence IX	D8291	Average number of events for 4 iterations, max Number of events per iteration, max		5 8	
Sequence X	D8279	EOT elongation, % increase, max		0,085	

1

1

No let and a series

		Table A – 2 – API SN and SN-RC/GF-5 categorie	API SN	API SN	SN-RC/GF-5	
Requirements	ASTM Test method	Properties	0W-16 5W-16 0W-20 5W-20 0W-30 5W-30 10W-30	other viscosity grades	All viscosity grade	
Bench Tests		, 2 ³	1			
EOFT	D6795	% flow reduction, max			50	
EOWTT	D6794	% flow reduction, max - with 0,6 % H2O - with 1,0 % H2O - with 2,0 % H2O - with 3,0 % H2O			50 50 50 50	
TEOST MHT	D7097	High temperature deposits, deposit wt, mg, max	35:		45 35	
Aged oil low- temperature viscosity	D4684 or D7528	MRV TP-1 Apparent Viscosity and Yield Stress, cP	<	50,000 cP w	ith no yield stress	
	دور	a stated and Thinks Different	÷	1	1	

1

~ 2.

41

1

22/45

10

		Table A – 2 – API SN and SN-RC/GF-5 categories	API SN .	API SN	SN-RC/GF-5
Requirements	ASTM Test method	Properties		other viscosity grades	All viscosity grades
		high-temperature deposits, total deposit weight, mg, max	NR	NR	NR
TEOST 33C	D6335	SAE XW-16	NR	NR	NR
LEUST SSC	190399	SAE 0W-20 All other viscosity grades	· NR	NR	30
Emulsion	D7563	oil mixed with 10 % water and 10 % E85, 0 °C and 25	NR	NR	no water separation
retention		°C at 24 hours		100	
Ball Rust Test	D6557	average gray value, min	Volume Change,	Hardness,	Tensile strengt
		5.75	, %	points	change, %
		Polyacrylate Rubber (ACM)	1-5,9	-10, 10	-40, 40.
Elastomer	D7216	Hydrogenated Nitrile (HNBR)	-5, 10	-10, 5	-20, 15
Compatibility	D7210	Silicone Rubber (VMQ)	-5, 40	-30, 10	-50, 5
		Fluorocarbon, Rubber (FKM)	-2, 3	-6, 6	-65, 10
		Ethylene Acrylic Rubber (AEM)	-5, 30	-20, 10	-30, 30
Engine test requ	irements				
ingine test requ		Kinematic viscosity increase at 40 °C, %, max		150	
		Average weighted piston deposits, merits, min		4,0	
Sequence IIIG	D7320	Hot stuck rings		none	
		Average cam plus lifter wear, µm, max		60	

N. F.

JS 392-1:2023					
	Т	able A - 2 - API SN and SN-RC/GF-5 categories (continued)	APJ-SN	API SN	SN-RC/GF- 5
Requirements	ASTM Test method	Properties	0W-16 5W-16 0W-20 5W-20 0W-30 5W-30 10W-30	other viscosity grades	All viscosity grades
Or			1	150	,
		Kinematic viscosity increase, %, max	150		
Sequence IIIH	D8111	Average weighted piston deposits, metric, min	3,7		
		Hot stuck rings	none		
Sequence IVA	D6891	Average cam wear (7 position average), µm, max	90		
Sequence VG		Average engine sludge, metric, min	8,0		
		Average rocker cover sludge, metric, min	8,3		
		Average engine varnish, metric, min	8,9		
		Average piston skirt varnish, metric, min		7,5	
	D6593	Oil screen sludge, % area, max		15	
		Oil screen debris, % area	rate and report		
		Hot-stuck compression rings	none		
		Cold stuck rings	rate and report		
		Oil ring clogging, % area	ra	ate and rep	ort

1

r

		Table A – 2 – API SN and SN-RC/GF-5 categories (continu	API SN	API SN	SN-RC/GF-	
Requirements	ASTM Test method	Properties	0W-16 5W-16 0W-20 5W-20 0W-30 5W-30 10W-30	other viscosity grades	All viscosity grades	
Or		Sitt.	<u>, ↓</u>	7,6		
		Average engine sludge, merits, min	7,7			
	D8256		8,6			
Sequence VH		Average engine varnish, merits, min	7,6			
		Oil screen clogging, % area		rate and report	t	
		Hot stuck compression rings		none	1	
		SAE XW-16 viscosity grade	NR	NR	2,8	
		- FEI 2, min after 100 hours aging		1	1,3	
		SAE XW-20 viscosity grade ^(C) - FEI SUM, % min			2,6	
		- FEI 2, % min after 10 hours aging		*	1,2	
Sequence VID	D7589	SAE XW-30 viscosity grade - FEI SUM, %min		1	1,9	
					0,9	
		- FEI 2, % finin after 100 hours aging SAE 10W-30 and all other viscosity grades not listed above - FELSUM, % min			1,5	
		- FEI 2, % min after 100 hours aging			0,6	
Or		A A A A A A A A A A A A A A A A A A A	L,	terre and the second		

i

3 392-1:2023		Table A - 2 - API SN and SN-RC/GF-5 categories (contin	ued)	. 3 . 7	
	ASTM Test method			API SN	SN-RC/GF-5
Requirements		Properties	0W-76 5W-16 5W-20 5W-20 0W-30 5W-30 10W-30	other viscosity grades	All viscosity grades
Sequence VIE	D8114	SAE XW-20 viscosity grade - FEI SUM % min	. 1		3,2
		- FEI 2 % min after 100 hours aging SAE XW-30 viscosity grade - FEI SUM % min	, ,		2,5
		- FEI 2 % min after 100 hours aging SAE 10W-30 and all other viscosity grades not listed above			1,2
		- FEI SUM % min	1		2,2 1,0
Sequence VIF	D8226	SAE XW-16 viscosity grade 3 - FEI SUM 3,7 % min			3,7
		- FEI 2 1,8 % min after 100 hours aging		1	1,8
Sequence VIII	D6709	Bearing weight loss; mg		26	
Sequence IX	D8291	Average number of events, max		5	

۱

•

.

erage num and Files

		Table A – 3 – API SM/GF-4 categories		and a state of the	DJS 392-1
	ASTM Test method		1.285-202	SM/GF-4	
Requirements			, 12 M	0W-20 5W-20 0W-30 5W-30 10W-30	All others
Bench Tests		J.		· · ·	
EOFT	D6795	% flow reduction, max			50
EOWTT	D6794	% flow reduction, max - with 0,6 % H2O - with 1,0 % H2O - with 2,0 % H2O - with 3,0 % H2O		50 50 50 50	
TEOST (MHT)	D7097	High temperature deposits, deposit wt, mg, max		35	45
Engine performance	e tests	\$ 77	1	1	1
		Kinematic viscosity increase at 40 °C, % max			50
	77200	Average weighted piston deposits, merits, min			3,5
Sequence IIIG	D7320	Hot stuck ripgs		60 ·	
		Average cam plus lifter wear, µm, max			

**

walt alto and find

Requirements	ASTM Test method	Properties	ssed ³ SM	For SM/GF-4		
		is the state of th	0W-20 5W-20 0W-30 5W-30 10W-30	All others		
)r		,	·····	150		
		Kinematic viscosity increase at 40 °C, % max		150		
Sequence IIIH	D8111	Average weighted piston deposits, merits, min		3,2 none !		
		Hot stuck rings		1		
Sequence IVA	D6891	Average cam wear (7 positionvaverage) µm, max		90		
	D6593	Average engine sludge, merits, min		7,8		
		Average rocker cover sludge, merits, min		8,0		
		Average engine varnish, merits, min		8,9		
		Average piston skirt varnish, merits, max		1,5 ,		
		Oil screen sludge, % area		20		
Sequence VG		Oil screen debris, % area		nd report		
		Hot-stuck compression rings		none		
		Cold stuck rings		nd report		
		Qif ring clogging, % area		nd report		
		Follower pin wear, cyl #8, average,		nd report		
		Ring gap increase, cyl #1 and #8, average, µm	rate a	nd report		
	, 3th			9 1		
	المحتود	,		4		
	3. S			1		
	John H. Partie Marker					
5		28/45				

1

+1

4
..

-

			ι.	DJS 392-1:2023
		Table A - 3 - API SM/GF-4 categories (continued)	1 	1, 1) e ²⁷
Requirements	ASTM Test method	Properties	1	SM/GF-4
		Average engine sludge, merits	0W-20 5W-20 0W-30 5W-30 10W-30	All'others
Or	1		·	
ga di ana ang ang ang ang ang ang ang ang ang		Average engine sludge, merits		7,4
Sequence VH	D8256	Average rocker cover sludge, merits		7,4
		Average engine varnish, merits		8,6
		Average piston skirt varnish, merits		7,6
		Oil screen clogging, % area		rate and report
		Hot stuck compression rings	++	26 1
Sequence VIII	D6709	Bearing weight loss, mg, max		20
		Bearing weight loss, mg, max		
	The start is reinte	J. C.	t	ť
	,*a)	29/45		

Bench Tests 50 EOFT D6795 % flow reduction, max 50 EOWTT D6794 % flow reduction, max 50 with 0,0 % H2O 50 50 with 2,0 % H2O 50 with 3,0 % H2O 50 mith 1,0 % H2O 50 with 3,0 % H2O 50 with 3,0 % H2O 50 mith 3,0 % H2O 50 With 3,0 % H2O 50 Weighted piston deposit mass, mg, max 45 Engine performance tests 45 Sequence IIIF D6984 Kinematic viscosity, % increase at 40 °C, max 275 Average piston skirt varrigh rating, min 4,0 50 Screened average cgdn-plus-lifter wear, µm, max 20 10 Hot stuck rings, 7 100 10 10 Or Vigighted piston deposit rating, min 3,5 10 Vigighted piston deposit rating, min 3,5 10 10 Vigighted piston deposit rating, min 3,5 <th>Requirements</th> <th>ASTM Test method</th> <th>Properties</th> <th>Primary Performance Criteria</th>	Requirements	ASTM Test method	Properties	Primary Performance Criteria
EOFT D6795 % flow reduction, max with 0,6 % H20 with 1,0 % H20 with 2,0 % H20 with 3,0 % H2O 50 50 50 TEOST MHT-4 D7097 high temperature deposits, deposit mass, mg, max 45 Engine performance tests Image: Comparison of the state of	Bench Tests			· · · · · · · · · · · · · · · · · · ·
TEOST MHT-4 D7097 high temperature deposits, deposit mass, mg, max 45 Engine performance tests	EOFT	D6795	% flow reduction, max	50
TEOST MHT-4 D/097 Ingit temperature deposits, deposit mass mg, max Engine performance tests Kinematic viscosity, % increase at 40 °C, max 275 Sequence IIIF D6984 Kinematic viscosity, % increase at 40 °C, max 20 Meighted piston deposit rating, min 4,0 Screened average can-plus-lifter wear, µm, max 20 Hot stuck rings none Low temperature viscosity performance report Or Veighted piston deposit rating, min 3,5 Kinematic viscosity, % increase at 40 °C, max 150 Veighted piston deposit rating, min 3,5 Low temperature viscosity performance report Or Veighted piston deposit rating, min 3,5 Sequence IIIG D7320 Kinematic viscosity performance report Met stuck rings none 100 100 Low temperature viscosity performance report 100	EOWTT	D6794	with 5,0 70 1120	50 50 50
Sequence IIIF D6984 Kinematic viscosity, % increase at 40 °C, max 275 Average piston skirt varnigh rating, min 9,0 Weighted piston deposit rating, min 4,0 Screened average cam-plus-lifter wear, µm, max 20 Hot stuck rings none Low temperature viscosity performance report Or Kinematic viscosity, % increase at 40 °C, max Sequence IIIG D7320 Kinematic viscosity performance 60 Hot stuck rings none Low temperature viscosity performance report	TEOST MHT-4	D7097	high temperature deposits, deposit mass, mg, max	45
Sequence IIIF D6984 Kinematic viscosity, % increase at 40 °C, inax 9,0 Weighted piston skirt vanigh rating, min 4,0 Screened average cam-plus-lifter wear, μm, max 20 Hot stuck rings, % none Low temperature viscosity performance report Or Veighted piston deposit rating, min Sequence IIIG D7320 Kinematic viscosity, % increase at 40 °C, max 150 Weighted piston deposit rating, min 3,5 Gam-plus-lifter wear average, μm, max 60 Weighted piston deposit rating, min 3,5 Low temperature viscosity performance report	Engine performance	e tests	and the second s	2
Sequence IIIF D6984 Average piston skirt varnigh rating, min 9,0 Weighted piston deposit rating, min 4,0 Screened average cam-plus-lifter wear, μm, max 20 Hot stuck rings none Low temperature viscosity performance report Or Veighted piston deposit rating, min 3,5 Sequence IIIG D7320 Kinematic viscosity, % increase at 40 °C, max 150 Weighted piston deposit rating, min 3,5 60 Hot stuck rings none 60 Weighted piston deposit rating, min 50 60 Veighted piston deposit rating, min 50 60 Weighted piston deposit rating, min 50 60 Weighted piston deposit rating, min 50 60 Hot stuck rings none report Low temperature viscosity performance report 7		T	Kinematic viscosity, % increase at 40 °C, max	275
Sequence IIIF D6984 Weighted piston deposit rating, min 4,0 Screened average cam-plus-lifter wear, μm, max 20 Hot stuck rings none Low temperature viscosity performance report Or Veighted piston deposit rating, min 3,5 Sequence IIIG D7320 Kinematic viscosity, % increase at 40 °C, max 150 Veighted piston deposit rating, min 3,5 60 Hot stuck rings none none Low temperature viscosity performance report 60			Average piston skirt varnish rating, min	9,0
Sequence IIIF D6984 Screened average cam-plus-lifter wear, μm, max 20 Hot stuck rings none Low temperature viscosity performance report Or Kinematic viscosity, % increase at 40 °C, max 150 Sequence IIIG D7320 Kinematic viscosity performance 3,5 Hot stuck rings 0 0 0 Hot stuck rings 0 0 0 Kinematic viscosity performance report 60 Veighted piston deposit rating, min 3,5 0 Weighted piston deposit rating, min 0 0 Hot stuck rings 0 0 Low temperature viscosity performance report		D6984		4,0
Hot stuck rings none Low temperature viscosity performance report Or Kinematic viscosity, % increase at 40 °C, max 150 Sequence IIIG D7320 Kinematic viscosity, % increase at 40 °C, max 60 Weighted piston deposit rating, min 3,5 60 Hot stuck rings none none Low temperature viscosity performance report	Sequence IIIF		Screened average cam-plus-lifter wear, um, max	20
Or Kinematic viscosity performance report Sequence IIIG D7320 Kinematic viscosity, % increase at 40 °C, max 150 Weighted piston deposit rating, min 3,5 Gain-plus-lifter wear average, μm, max 60 Hot stuck rings none Low temperature viscosity performance report				none
Sequence IIIG D7320 Kinematic viscosity, % increase at 40 °C, max 150 Weighted piston deposit rating, min 3,5 Gain-plus-lifter wear average, μm, max 60 Hot stuck rings none Low temperature viscosity performance report			Low temperature viscosity performance	report
Sequence IIIG D7320 Kinematic viscosity, % increase at 40 °C, max 150 Weighted piston deposit rating, min 3,5 Gain-plus-lifter wear average, µm, max 60 Hot stuck rings none Low temperature viscosity performance report	Or	1		
Sequence IIIG D7320 Gain-plus-lifter wear average, µm, max 60 Hot stuck rings 1000 1000 1000 1000 1000 1000 1000 10			Kinematic viscosity, % increase at 40 °C, max	A second s
Sequence IIIG D7320 Azam-plus-inter wear average, plus, max none Hot stuck rings none Low temperature viscosity performance report				
Low temperature viscosity performance report	Sequence IIIG	D7320		
in the second se			Hot stuck rings	and the second
		. A	Low temperature viscosity performance	report
		and the state of the state of		
	بر	35	30/45	1

1

-

Requirements	ASTM Test method	Properties	Primary Performance Criteria
Or			1. P?
		70 h kinematic viscosity, % increase at 40 °C, max	181
Sequence IIIH 70-	D8111	70 h average weighted piston deposits, merits, min	3,3
hour guideline	-	70 h kinematic viscosity, % increase at 40°C, max 70 h average weighted piston deposits, merits, min 70 h average piston skirt varnish, merits, min	, 7,9
Sequence IVA	D6891	Cam wear average, µm, max	, 120
		Cam wear average, µm, max	127
Sequence VE	D5302	Cam wear max, µm, max	380
		Average engine sludge rating, min	7,8
		Rocker arm cover sludge rating, minf	8,0
		Average piston skirt varnish rating, min	7,5
		Average engine varnish rating, min	8,9
Sequence VG ²⁹⁾	D6593	Oil screen clogging, %, max	20
sequence vo		Hot stuck Compression sings	none
		Cold stuck rings	' report
		Oil screen debris, 26	report
		Oil ring clogging, %	report
Or		5	
	1	Average engine sludge, merits, min	7,4
		Average rocker cover sludge, merits, min	7,4
Sector of VII		Average engine varnish, merits, min	8,6
Sequence VH	D8256	Average piston skirt varnish, merits, min	7,4
	10	Oil screen clogging, % area	rate and report
	e star	Hot stuck compression rings	none
Sequence VIII	D6709	Bearing weight loss, mg, max Shear stability	26,4 stay in grade

1

1 .

Requirements	ASTM Test method	Prope	rties	Primary Performance Criteria
Bench Tests			19	· · · · · · · · · · · · · · · · · · ·
EOFT	D6795	% flow reduction, max	2338	50
EOWTT	D6794	% flow reduction, max - with 0,6 % H2O - with 1,0 % H2O - with 2,0 % H2O - with 3,0 % H2O	a culturation of the last loss	report report report report
TEOST 33	D6335	High temperature deposits, deposit r	masszing, max	60
Engine performanc	e tests		9'	
	1	Average engine rust rating, min		8,5
Sequence IID	D5844			none
Sequence 225	D6557	Average engine rust rating, min Number stuck lifters Average gray value, min Hours to 375 % kinematic viscosity increase at 40 °C, nlin	100	
		Hours to 375 % kinematic viscosit	ty increase at 40 °C, min	64
		Average engine sludge rating, mir	1	9,2
		Average piston skirt varnish rating	g, min	8,9
		Average oilging land deposit ratin	ng, min	3,5
		Lifter sticking		none
Sequence IIIE	D5533	Scuffing and wear - Cam or lifter scuffing		none
		12/2	Average, max'	30
		Cam plus lifter wear, µm	Maximum, max	64
	july .	Ring sticking (oil-related)	and the first of the second	none

..

5-

:

1-

Requirements	ASTM Test method	Prope	rties	Primary performance criteria
Or			198.5	
		Kinematic viscosity, % increase a		325
		Average piston skirt varnish rating		8,5
Sequence IIIF	D6984	Weighted piston deposit rating, m	in the second se	3,2
		Screened average cam-plus - lifter	wear, µm, max ⁷	20
		Hot stuck rings	c we	none!
Or				1
		Kinematic viscosity, % increase a	t 40 °Ç; max	150,
	Weighted piston deposit rating, K min, ²		3,5	
Sequence IIIG I	D7320	Cam-plus-lifter wear average, µm		60 ,
		Hot stuck rings		none
Or				Á
Sequence IIIH		60 h kinematic viscosity, % increa	ase at 40 °C, max	307
60/70-hour	D8111	70 h average weighted piston depo	osits, merits, min	2,5
guideline		70 h average piston skirt varnish,	merits, min	7,5
		Average engine sludge rating, mir	1	9,0
		Rocker armscover sludge rating, n	nin	7,0
	Average piston skirt varnish rating, min			6,5
		Average engine varnish rating, mi	n	5,0
Sequence VE	D5302	Oil ring clogging, %		report
		.Oil screen clogging, %, max		20,0
		Compression ring sticking (hot stu	nck)	none
	الكنفرين	0	Average, max	127
		Cam wear, µm	Maximum, max	380

-1

Primary performance criteria Properties ASTM Test method Requirements 120 Average cam wear, µm D6891 7,8 Average engine sludge rating, min . . 8,0 Rocker arm cover sludge rating, min Sequence IVA plus 7,5 Average piston skirt varnish rating, min Sequence VG D6593 8.9 Average engine varnish rating, min 20 3 Oil screen clogging, %, max none Hot stuck compression rings 3 4 Average engine sludge, merits, min Average rocker cover sludge, merits, min 7.4 8,6 Average engine varnish, merits, min 3 D8256 Sequence VH 117.4 the t Average piston skirt varnish, merits, min rate and report Oil screen clogging, % area .. hone Hot stuck compression rings, 5 40 111 Bearing weight loss, mg, max L-38 D5119 Stay in grade Shear stability .13 1 26 4 Bearing weight loss, mg, max Sequence VIII D6709 Stay in grade Shear stability 7

Table A - 5 - API SJ category (continued)

		Annex B (Normative Diesel engine oil ca	/	Part Carton	547 ⁴⁵	
·		Table B - 1 - API CK-4 and	FA-4 categories	.3)		·
Requirements	ASTM Test method	Properties		CK-4,	1	FA-4
Berich Tests				<u>}</u>		· · ·
			xW-30	0W-40	Other xW-40	xW-3,0
Shear Stability	D7109	Kinematic viscosity after 90 pass, shearing, mm ² /s at 100 °C, min	9,3	12,5	12,8	.9,3
2400 200000		HTHS viscosity at 150 °C, mPa s, min	y * 3,4	NA	NA	2,8
			xW-30	1	W-40	1
Manana	DISO	Copper, mg/kg increase, max		20	1.11	20 1
HTCBT	D6594	Lead, mg/kg increase, max		120		120 ₁
		- F 13-	Volume Change, %	Hardness, points	1	It other the t
		Nitrile (NBR)	+5, -3	+7; -5	+101-TMC 1006	H10, -TMC 10206
Elastomer	D7216	Silicone (VMQ)	+TMC 1006, -3	+5, TMC 1006		+20, -30
Compatibility		Polyacrylate (ACM)	+5, -3	+8,-5	+18,-15	+10, -35
i.		Fluoroelastomer (FKM)	+5, -2	+7, -5	H10, -TMC 1006	+10]-TMC 10 06
		Vamac G)	+TMC 1006, -3	+5, -TMC 1008	+10, -TMC 1006	+10, -TMC 1006;

Annex B

. .9.

41

÷.

35/45

15 M

.

Requirements	ASTM Test method	Pi	roperties	CK-4		FA-4
Engine performa	nce tests			12		
	Ι			and the state of t	performance	criteria
				1 test	2 tests	3 tests
	-	Top Ring Mass Loss, mg, n	nax 3	,	105	
T-12	D7422	Cylinder Liner Wear, µm, n	h		24,0	
		IR Peak at EOT, Abs., cm	13	125	130	13 3
		Kinematic Viscosity Increa	se at 40 °C % max	75	85	90
T-13	D8048	Average. Oil Consumption,	48 h to 192 h, g/h, inax	report	report	report
		TGA % Soot at 4.0 mm ² /s i		3,5	3,4	3,3
~	Dates	TGA % Soot at 12.0 mm ² /s	increase at 00 °C min	6,0	5,9	5,9
T-11	D7156	TGA % Soot at 12.0 mm ² /s	increase of 100 °C min	6,7	6,6	6,5
~	07540		W at 100 C, min		1 000	
C13	D7549	Merit rating, min Average Aeration, 40 h to 50	76.00%	1	11,8	
Coat	D8047	Average Aeration, 40 if to 5	3			
		Slider tappet mass loss, mg	, average, max	100	108	112
ISB	D7484	Cam lobe wear, µm, averag	e, max	55	59	61
1.51		Crosshead mass loss, mg, a		report	report	report
		Top Ring Mass Loss,	mg, max		100	
ISM	D7468	Top reing many boos,	Merit Rating		1 000	

.

1

153 33 American all man fillers

36/45

1

.

Requirements	ASTM Test method	roperties		23 CK-4		FA-4
			5	Primary po	erformance	criteria
				1 test	2 tests	3 tests
		Weighted demerits (WDN),	max	286,2	311,7	323,0
		Top groove fill (TGF), %, n		, 20	23	25
		Top land heavy carbon (TL)		3	4.	5
	D6750	Top Iana nearly careen (12	g/kWh, (0 h to 252/h), max	0,54	0,54	0,54
1 N	D0750	Oil consumption	g/MJ, (0 h to 252 h), max	0,15	0,15	0,15
		Piston, ring, and liner scuffi		none	none	none
		Piston ring sticking	· · · · · · · · · · · · · · · · · · ·	inone	none	none
			milstmax	0,3	0,33	0,36
RFWT	D5966	Average pin wear	(µm) max	(7,6)	(8,4)	(9,1)

.

Table B - 1 - API CK-4 and FA-4 categories (continued)

DJS 392-1:2023

1

37/45

303

		Table B – 2 – API C	J-4 category	;	in the second se	
Requirements	ASTM Test method	Properties	Primary Berformance Criteria			
Bench Tests				Y*		1
Shear Stability	D7109	Kinematic viscosity after 90 pass shearing, mm ² /s at 100 °, min	XW-:	30. 1 ^{12.}		2,5
Sussiy			Volume Change	Hardness, points	Tensile strength, %	Elongation,
Elastomer		Nitrile (NBR)	+5, -3 // +TMØ 1006, -3	+7, -5 +5, -TMC 1006	+10, -TMC 1006 +10, -45	1+10, -TMC 1000
Compatibility	D7216	Silicone (VMQ) Polyacrylate (ACM)	+5,23	+8, -5	+18, -15	+10, -35
		Fluoroelastomer (FKM)	A5,-2	+7, -5	+10, -TMC 1006	I+10, -TMC 100
		Vamac G)	+TMC 1006, -3	+5, -TMC 1006	+10, -TMC 1006	'+10, -TMC 100
Engine perform	nance tests					1
		- V3	1 4	Primary perio	rmance criteria 2 tests	3 tests
	DELCO	4	1 test	I1 (000	1 0 1000
T-12	D7422	Merit rating, min			000	i)
ISM	D7468	Merit rating, min Top ring mass loss, mg, max			00	
		Merit rating, min		1 (000	
C13	D7549	Hot-stuck piston ring		no	ine	
		TGA % Soot at 4,0 mm ² /§ increase, at 100 °C, min	3,5		3,4	3,31
T-11	D7156	TGA % Soot at 12,0 mim ² /s increase, at 100 °C, min	6,0		5,9	5,9
		TGA % Soot at 15,0°mm ² /s increase, at 100 °C, min	6,7		6,6	6,51
		Slider tappet mass loss, mg, average, max	100		108	112
ISB	D7484	Cam lobe wear, µm, average, max	55		59	61
		Crosshead mass loss, mg, average	report		report	report

4

ð.

Requirements	ASTM Test method	Properties	. 4	3' Prim	ary performanc	e criter_ia
	Incentou		and the second se	1 test	2 tests	3 teests
		Weighted demerits (WDN), max		286,2	311,7 23	323 ,0
1N		Top groove fill (TGF), %, max Top land heavy carbon (TLHC), %, max	·	20	4	5
		Average oil consumption,		0,54	0,54	0,5-4
	D6750	Piston, ring, and liner scuffing	g/kWh (@h - 252 h), max	0,15	0,15	0,1.5
		Tiston, Ting, and mor sourcing	g/MJ=(0 h - 252 h), max	none	none	nome
		Piston ring sticking	NA .	none	none	nome
			mils, max	10,3	Q,33	0,3•6
RFWT	D5966	Average pin wear	μm, max	7,6	'8,4	1 9,1_
Sequence IIIF or	D6984	Kinematic viscosity (at 40 °C), % increase, max		,275	275 (MTAC)	275 (MITA
Sequence IIIG or	D7320	Kinematic viscosity (at 40 °C), % increase, max (N	ATAC)	150	150(MTAC)	150 (MATA
Sequence IIIH or	D8111	60 - 80 h Kinematic viscosity, % increase at 40 °C	max	370	370 (MTAC)	370 (MITA
Sequence IIIH70	D8111	70 h Kinematic viscosity, % increase at 40 °C max		181	181 (MTAC)	181 (MITA
EOAT	D6894	Aeration, volume, %, max		8	8 (MTAC)	8 (M∎ A

39/45

and the second

SAS

3

Arrite Will are

Requirements	ASTM Test method	Properties	Primary Performance Criteria			
Bench Test				<u><u> </u></u>	- <u> </u>	w-40
Shear Stability	D6278	Kinematic viscosity after shearing, mm ² /s at 100 °C, min		₩=30 9,3 '	1	12,5
		Copper, mg/kg increase, max	1		20	
		Lead, mg/kg increase, max	للمرزم		120	<u>,</u>
HTCBT	D6594	Tin, mg/kg increase	Y	TC.	eport	,
		Copper strip rating, max	a siling		3	ţ
MRV-TP-1	D4684	Viscosity of 75 h used oil sample from T-10 test (or T-10A test), or 100 h used oil sample from T-12 test (or T-12A test, tested at -20 °C, mPa.s, max	, p	, 25	5 000	
		vield stress, Pa			< 35	
		Jield Strobs, i d	Volume Change, %	Hardness, points	Tensile strength, %	Elongation, %
	10701	Nitrile (NBR)	+5, -3	+7, -5	+10, -TMC 1006	+10, -TMC 1006
Elastomer	ASTM- D7216	Silicone (VMQ)	+TMC 1006, -3	+5, -TMC 1006	+10, -45	+20, -30
Compatibility	D/210	Polyacrylate (ACM)	+5, -3	+8, -5	+18, -15	+10, -35
		Fluoroelastomer (FKM)	+5, -2	+7, -5	+10, -TMC 1006	+10, -TMC 1006

Table B - 3 - API CI-4 and CI-4 PLUS categories

٤

198

and in the 1. 55 FT Jack Hand

۱.,

1

Requirements	ASTM Test method	Properties	Primar	Primary Performance Criteria				
Engine performance tests								
			1 test	2 tests	3 tests			
		Weighted demerits (WDR), max	382	396	402			
		Top groove carbon (TGC), demerits, max \mathcal{P}^{P}	52	57	59			
		Top land carbon (TLC), demerits, max	31	35	36			
	D6923	Initial oil consumption (IOC), (0 h - 252 h), g/h, average	13,1	13,1	13,1			
		Final oil consumption, (432 h - 504 h), g/h, average, max	IOC + 1,8	IOC + 1,8	IOC + 1,8			
1R		Piston, ring, and liner distress	none	none	none			
or		Ring sticking	none	none	none			
1P		Weighted demerits (WDP), max	350	378	390			
		Top groove carbon (TGC), demerits, max	36	39	41			
		Top land carbon (TLC), demerits, max	40	. 46	49			
	D6681	Average oil consumption, g/h (0 h - 360 h), max	12,4	, 12,4	12,4			
		Final oil consumption, g/h (312 h - 360 h), max	14,6	14,6	14,6			
		Piston, ring, and liner scuffing	none	none	none			
Т-10	D6987/D6	Merit rating, min		1 000				
or	987M							
T-12	D7422	Merit rating, min		1 000				

41/45

y?

water fillow

Requirements	ASTM Test method	Properties		Primary Performance Criteria		
•				1 test	2 tests	3 ttests
M11 or ISM	D6975	Average crosshead mass. loss, mg,	max vit	20,0	21,8	222,6
		Average top ring mass loss, mg	۵Ĵ	report	report	report
		Oil filter differential pressure at 250 h, kPa, max		275	320	3-41
		Average engine sludge, CRC merits at EOT, min		7,8	7,6	育,5
	D7468	Crosshead wear, mg, max		.7,5	7,8	71,9
			Oil filter \triangle pressure at 150 h, kPa, max		67	774
		Sludge rating, CRC Merits, min		8,1	8,0	8,0
Ext. T-8E	D5967	Relative viscosity at 4,8 % soot	2	,1,8	1,9	2:,0
Sequence IIIF Or Sequence IIIG Or Sequence IIIH Or Sequence IIIH70	D6984	Kinematic viscosity (at 40 °C), percent increase, max		275	275 (MTAC)	275 (IMTAC
	D7320	Kinematic viscosity, percent increase at 40 °C max		+150	150 (MTAC)	150 (IMTA'C
	D8111	60 - 80 h Kinematic viscosfty, % increase at 40 °C max		,370	370 (MTAC)	370 (EMTAC
	D8111	70 h Kinematic viscosity, % increase at 40 °C max		181	181 (MTAC)	181 (MTAC
1K	D6750	Weighted demerits (WDK), max		332	347	353
		Top groove fill (FGF), %, max		24	27	2:9
		Top land heavy carbon (TLHC), %, max		4	5	55
		Average oil consumption	g/kWh (0 h – 252 h), max	0,54	0,54	0,54
		a)	g/MJ (0 h – 252 h), max	0,15	0,15	0,15
		Piston, ring, and liner scuffing		none	none	ncone
RFWT	D5966	Average pin wear	mils, max	0,3	0,33	0,336
			μm, max	7,6	8,4	97,1
EOAT	D6894	Aeration, volume percent, max		8,0	8,0 (MTAC)	8,0 (MATAC

Table B - 3 - API CI-4 and CI-4 PLUS categories (continued)

1

\$ -influent 2

Requirements	ASTM Test method	Properties	Primary Performance Criteria			
Bench Tests)					
HTCBT, 135 °C	D6594	Copper, mg/kg increase, max Lead, mg/kg increase, max Tin, mg/kg increaset Copper strip rating, max		20 120 report 3		
				XW-30		XW-40
Shear Stability	D6278	Kinematic Viscosity after shearing, mm ² /s at 100 °C, min		9,3		12,5
Engine performan			- SP			
0 1			5 9°	Primary Performance Criteria		
			Str. 2	1 test	2 test	3 test
1P	D6681	Weighted demerits (WDP), max	if ⁸	350	378	390
		Top groove carbon (TGC), demerits, max		36	39	41
		Top land carbon (TLC), demerits, max		40	• 46	49
		Average Oil Consumption, g/h (0 h - 360 h), m	ax	12,4	12,4	.12,4
		Final Oil Consumption, g/h (312 h, 360 h), max		14,6	14,6	14,6
		Piston, ring, and liner scuffing		none	none	nóne
1K-	D6750	Weighted demerits (WDK), %, max		332	347	353
		Top groove fill (TGF), %, max		24	27	, 29
		Top land heavy carbon (TLHC), %, max		4	5	5
		Average Oil Consumption		0,54	0,54	0,54
		o/k	Wh (0 h - 252 h), max	0,15	0,15	0,15
		Distan ming and linear southing	4J (0 h - 252 h), max	none	none	none

٠

DJS 392-1:2023

*

1. ٢.

Table B - 4 - API CH-4 category (continued)

1

(10

Requirements	ASTM Test method	Table B - 4 - API CH-4 category (continued) Properties		Primary Performance Criteria		
	method	.9.	1 test	2 test	3 test	
		Average Liner Wear, normalized to 1,75 % soot, µm max	25,4	26,6	27,1	
T-9 or T-10 or T-12	D6483	Average Top Ring Mass Loss, mg max	120	136	144	
		EOT Used Oil Lead Content less New Oil Lead Content, mg/kg, max	25	32	36 j	
		N S	32	34	35	
	D6987/D6987M	Liner wear, µm, max	1,50	159 1	163	
		Ring wear, mg, max Lead content at EOT, mg/kg, max	50	56	59	
			30,0	30,8	31,1	
	D7422	Liner wear, µm, max	120	132	137	
		Top Ring Mass Loss, mg, max 4	65	75	79	
		Lead content at EOT, mg/kg, max	0,3	0,33	0,36	
RFWT	D5966	Average Pin Wear	7,6	8,4	9,1	
M-11 0r ISM	D6838	Rocker Pad Average Mass Loss, normalized to 4.5 % soot, mg max	6,5	7,5	8,0	
		Oil Filter Differential Pressure at EOT, kPa max	79	93	100	
		Average Engine Sludge, CRC Merits at EOT, min	8,7	8,6	8,5	
		Crosshead wear, mg, max	7,5	7,8	7,9	
	D7468	Oil filter delta pressure, at 150 h, kPa, max	79	95	103	
		Sludge ratingy CRC merits, min	8,1	8,0	8,0	
Ext. T-8E	D5967	Relative Viscosity at 4,8 % Soot by TGA, max	2,1	2,2	2,3	
		Viscosity increase at 3,8 % Soot by TGA, mm ² /s, max	11,5	12,5	13,0	
Sequence IIIF or Sequence IIIG or	D6984	60 h Viscosity at 40 °C, increase from 10 min sample, % max	295	295 (MTAC)	295 (MTAC	
	D7320	Kinematic viscosity, % increase at 40 °C max	150	150 (MTAC)	150 (MTAC	
Sequence IIIH	D8111 f	60 h Kinematic viscosity, % increase at 40 °C max	249	249 (MTAC)	249 (MTAC	
EOAT	D6894	Aeration, volume, % max	8,0	8,0 (MTAC)	8,0 (MTAC	

-DJS 392-1:2023 3 - 16

References

- ASTM D 4485:2022, Standard Specification for performance of active API service category engine oils.

- SAE J300:2021, Engine oil classification.

and a supervised and a - SASO 19-2022, Lubricating oils for internal combustion engines API classifications.